Diversity of limb-bone safety factors for locomotion in terrestrial vertebrates: evolution and mixed chains.

نویسندگان

  • Richard W Blob
  • Nora R Espinoza
  • Michael T Butcher
  • Andrew H Lee
  • Angela R D'Amico
  • Faraz Baig
  • K Megan Sheffield
چکیده

During locomotion over land, vertebrates' limb bones are exposed to loads. Like most biological structures, limb bones have a capacity to withstand greater loads than they usually experience, termed a safety factor (SF). How diverse are limb-bone SFs, and what factors correlate with such variation? We have examined these questions from two perspectives. First, we evaluated locomotor SF for the femur in diverse lineages, including salamanders, frogs, turtles, lizards, crocodilians, and marsupials (opossums). Comparisons with values for hind-limb elements in running birds and eutherian mammals indicate phylogenetic diversity in limb-bone SF. A high SF (∼7) is primitive for tetrapods, but low magnitudes of load and elevated strength of bones contribute to different degrees across lineages; moreover, birds and eutherians appear to have evolved lower SFs independently. Second, we tested the hypothesis that SFs would be similar across limb bones within a taxon by comparing data from the humerus and femur of alligators. Both in bending and in torsion, we found a higher SF for the humerus than for the femur. Such a "mixed chain" of different SFs across elements has been predicted if bones have differing variabilities in load, different costs to maintain, or high SF values in general. Although variability in load is similar for the humerus and femur, a high SF may be less costly for the humerus because it is smaller than the femur. The high SFs of alligators also might facilitate differences in SF among their limb bones. Beyond these specific findings, however, a more general implication of our results is that evaluations of the diversity of limb-bone SFs can provide important perspective to direct future research. In particular, more complete understanding of variation in SF could provide insight into factors that promoted the evolutionary radiation of terrestrial locomotor function in vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.

Terrestrial locomotion can impose substantial loads on vertebrate limbs. Previous studies have shown that limb bones from cursorial species of eutherian mammals experience high bending loads with minimal torsion, whereas the limb bones of non-avian reptiles (and amphibians) exhibit considerable torsion in addition to bending. It has been hypothesized that these differences in loading regime are...

متن کامل

Loading mechanics of the femur in tiger salamanders (Ambystoma tigrinum) during terrestrial locomotion.

Salamanders are often used as representatives of the basal tetrapod body plan in functional studies, but little is known about the loads experienced by their limb bones during locomotion. Although salamanders' slow walking speeds might lead to low locomotor forces and limb bone stresses similar to those of non-avian reptiles, their highly sprawled posture combined with relatively small limb bon...

متن کامل

In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics.

Previous analyses of ground reaction force (GRF) and kinematic data from river cooter turtles (Pseudemys concinna) during terrestrial walking led to three primary conclusions about the mechanics of limb bone loading in this lineage: (1) the femur was loaded in a combination of axial compression, bending and torsion, similar to previously studied non-avian reptiles, (2) femoral shear stresses we...

متن کامل

Mechanics of limb bone loading during terrestrial locomotion in river cooter turtles (Pseudemys concinna).

Studies of limb bone loading during terrestrial locomotion have focused primarily on birds and mammals. However, data from a broader functional and phylogenetic range of species are critical for understanding the evolution of limb bone function and design. Turtles are an interesting lineage in this context. Although their slow walking speeds and robust limb bones might lead to low locomotor for...

متن کامل

Corrigendum Mechanics of limb bone loading during terrestrial locomotion in river cooter turtles (Pseudemys concinna)

First, in three places in the article, the reported value of yield stress in torsion for the femur of Pseudemys concinna was too high by a factor of 2. This error occurred in Table5, in the second paragraph of the Results section entitled ‘Mechanical properties and safety factor calculations’ (p. 1196) and in the first paragraph of the Discussion section entitled ‘Femoral safety factors in turt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Integrative and comparative biology

دوره 54 6  شماره 

صفحات  -

تاریخ انتشار 2014